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EPFL

Enseignant : Dr. Sylvain Bréchet =
Examen : physique générale 11

Date : vendredi 21 juin 2024 El_
Durée : 9h15 - 12h45

Corrigé

N° SCIPER:
SECTION :
SALLE /PLACE: /
L’examen est constitué de 3 problémes qui totalisent 57 points N° | VISA | POINTS
avec 4 points bonus additionnels. Chaque probléme comporte
un énoncé illustré et détaillé sur la page de gauche et des ques- 1
tions sur la page de droite. Les développements mathématiques 2
et physiques d’un probléme doivent étre effectués et rédigés pro-
prement sur les pages quadrillées a la fin du probléme. 3
Consignes

e Préparer votre carte Camipro, la poser visiblement sur la table et vérifier votre N° Sciper.
e Attendre le début de I’épreuve avant d’ouvrir le cahier d’examen.

e Le formulaire de ’examen (1 page A4 recto-verso) est autorisé.

e [’utilisation de tout appareil électronique est interdite.

e Un dictionnaire bilingue non annoté est autorisé pour les étudiant.e.s non francophones.

quadrillées & la fin du probléme.
effet.

avec du correcteur blanc si nécessaire.
e Ne pas dégrafer le cahier d’examen et laisser le tableau et les cases blanches vides.
e Les feuilles de papier brouillon ne seront pas ramassées et pas corrigées.

e Il est recommandé de résoudre les questions bonus a la fin de 'examen si le temps le permet.

e Effectuer les développements mathématiques et physiques d'un probléme sur les pages
e Retranscrire les réponses sur les pointillés sous chaque question dans les espaces réservés a cet

e Utiliser un stylo a encre noir ou bleu foncé (éviter d’utiliser un crayon) et effacer proprement
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Probléme 1: Frottement stationnaire entre des cylindres métalliques (19 points)

Lo Dl Dl Dl De Ll Do DLl Ds [Llo Lo [ Ju [ Jia [ Juo [ Jua [ Jis
[ e Lis [

Laisser les cases blanches vides

Mloxt I

Réservoir chaud 0 />
\ ) N {
a température 77 | ~~+ -~

|

Réservoir froid 0 |

a température Ty '« G}

Un systéme thermodynamique, formé de deux cylindres métalliques rigides de méme axe de symétrie ver-
tical, est en régime stationnaire. Le sous-systéme 1 est constitué du cylindre supérieur qui est entrainé
par un moment de force extérieure M;*' et tourne a vitesse angulaire constante w; = cste dans le sens
trigonométrique autour de 'axe de symétrie en vue d’avion. Le cylindre inférieur est le sous-systéme 2 qui

est maintenu immobile.

En régime stationnaire, le moment de force de frottement exercé par le cylindre inférieur 2 sur le cylindre
supérieur 1 de rayon r, est M 1“ = — A riwi ot A\; > 0. Le moment cinétique du cylindre supérieur est
L, = I, wy ou I; > 0 est son moment d’inertie par rapport a ’axe de rotation.

Les cylindres 1 et 2 sont des sous-systémes simples, rigides, constitués de N1 et Ny moles d’atomes respective-
ment. L’interface entre les cylindres est diatherme et imperméable. Le cylindre 1 est maintenu & température
constante T par le réservoir chaud 0 et le cylindre 2 est maintenu a température constante T par le réservoir
froid 0. Ces deux réservoirs de chaleur 0 sont considérés comme I'environnement du systéme. Le cylindre
supérieur a la méme vitesse angulaire que le réservoir chaud avec lequel il est & 1’équilibre thermique. Les
températures des cylindres satisfont la relation d’ordre T > T5.

Etant donné que le systéme est en régime stationnaire, ’énergie, I’énergie cinétique, 1’énergie interne et
I’entropie de chaque cylindre ainsi que le moment cinétique du cylindre supérieur sont des constantes.

Les réponses doivent étre exprimées en termes des températures 77 et To, des nombres de moles d’atomes
N7 et No, du moment d’inertie I7, de la norme de la vitesse angulaire wq, du coefficient A, du rayon r1, de
la constante des gaz parfaits R et des grandeurs scalaires spécifiées de I’énoncé de chaque question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suivantes
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1. (2 points) Ecrire I’énergie totale E du systéme.

Les variables d’état extensives du systéme sont le moment cinétique L (w1) du cylindre supérieure 1
et les entropies Sy (T1) et Sz (T3) des deux cylindres qui sont fonctions de leurs températures T; et

T,. L’énergie totale E (Ll (w1),51(Th), S2 (Tg)) du systéme est la somme de I’énergie cinétique de
rotation du cylindre supérieur 1 et des énergies internes des deux cylindres,

E <L1 (w1),81(Th), 52 (Tz)> = QLI% + Ui <51 (T1)> + U2 (52 (T2)> (1)

Compte tenu du moment cinétique du cylindre supérieur,

Ly (w) =1 w (2)
et des énergies internes des deux cylindres métalliques,

U, (571 (T1)> —3N\RT, et Us (52 (Tg)) — 3NoR T (3)
Pénergie totale (1) devient,

E (L1 (wl) ,Sl (Tl),SQ (TQ)) = %Il wf + 3R (Nl T1 + N2 TQ) (4)

2. (3 points) Déterminer la puissance extérieure P exercée sur le systéme. En déduire le courant de
chaleur total I entre le systéme et les réservoirs de chaleur (I’environnement) en régime stationnaire.

En régime stationnaire, le moment cinétique du premier cylindre L est constant. Ainsi, I’équation de
bilan de moment cinétique appliquée au cylindre supérieur 1 s’écrit,

.

bh=MF+MF=0 ainsi M =—-M" (5)

ou le moment de force de frottement M fr est intérieur au systéme mais extérieur au cylindre 1. La

. L. L. A t ~ :
puissance extérieure due au moment de force extérieur d’entrainement M ™ s’écrit alors,

PEXt:Mth~w1:—ler~w1:)\17'1w%>0 (6)

En régime stationnaire, énergie totale E est constante, c’est-a-dire £ = 0. Etant donné que les
cylindres sont rigides et fermés, le premier principe s’écrit,

E=Ig+P>"=0 (7)
Ainsi, le courant de chaleur qui évacue la chaleur dissipée par frottement dans le systéme s’écrit,

IQZ—PCXL:—A1T1W%<O (8)

3. (3 points) Déterminer le courant d’entropie Ig entre le systéme et les réservoirs de chaleur et la source

d’entropie Y g du systéme en termes des courants d’entropie I 51”2 et [ 3H1 entre les sous-systémes en

régime stationnaire.

En régime stationnaire, les équations de bilan d’entropie des deux cylindres s’écrivent,

Sy =187 4+ 127 =0 ainsi 197 =127
So=18724+1i72=0 ainsi 1972 = — 1472

(9)

Le courant d’entropie Ig entre I’environnement et le systéme est la somme des courants d’entropie
entre les réservoirs de chaleur et les cylindres 1 et 2,

Is =187 4+ 1972 = — (1472 4+ 127Y) <0 (10)
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En régime stationnaire, I’équation de bilan d’entropie du systéme s’écrit,

S=Is+Xs=0 (11)

Par conséquent, la source d’entropie décrivant le transfert irréversible de chaleur entre les cylindres
est,

Yg=—Ig=I3"24+1271>0 (12)

. (3 points) Montrer que la somme des courants de chaleur 7% et 57" entre les deux cylindres en

régime stationnaire s’écrit,
1—2 2—1 2

En régime stationnaire, le premier principe appliqué a chaque cylindre s’écrit,

U, = QO_>1 + Icg_” =0 ainsi ](8_” = —]5_’1
’ 0—2 1—2 Pl 0—2 1—2 (13)
Up=I57""4+157"=0 ainsi Ig7"=-1I;

Le courant de chaleur est la somme des courants de chaleur entre le réservoir et le sous-systémes,

Compte tenu de la relation (8), la somme des courants de chaleur entre les deux sous-systémes s’écrit,
1577+ 157 = =1 =P =X\riwi >0 (15)

. (2 points) Montrer que les courants de chaleur Ié_’g et 15_)1 entre les deux cylindres en régime

stationnaire satisfont la relation suivante,
T2+ Tol57 >0
Les courants de chaleurs s’écrivent en termes des courants d’entropie comme,
1572 =TIg7% et I3 =Ty I3 (16)

Compte des relations (16) entre les courants, la source d’entropie (12) pour le transfert irréversible de
chaleur est exprimée en termes des courants de chaleur comme,

1572 N g Mg+ LI

Sg =
S T2 Tl Tl TZ

>0 (17)

. (3 points) Durant un intervalle de temps quelconque At;_, s = t; — ¢;, déterminer en régime station-

naire la chaleur échangée Q;", f
chaleur échangée @, , ; entre le cylindre inférieur et le réservoir froid a température Ts, et le travail

W, effectué sur le systéme en termes des courants de chaleur 1572 et I57" entre les cylindres.

entre le cylindre supérieur et le réservoir chaud & température 77, la

En régime stationnaire, compte tenu de la relation (13), la chaleur échangée entre le cylindre 1 et le
réservoir chaud s’écrit,

ty tr )
Q= / 157 dt =157 / dt=15""Atiy=—157" Atig (18)
t; i
et la chaleur échangée entre le cylindre 2 et le réservoir froid s’écrit,
ty ty
Qs = / 1§72 dt = 137 / dt = 157% Aty p = = 1§7% Aty (19)
ti ti

Compte tenu de la relation (15), le travail extérieur effectué sur le systéme durant un intervalle de
temps quelconque At;_, ¢ s’écrit,

tf ty
Wl = / Pt dt = pe* / dt =P Aty = (157 +157") Aty >0 (20)
t t;

i
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7. (3 points) Déterminer 1’énergie libre F' (T3, T») du systéme.
L’énergie interne du systéme U (Sl (T1), So (Tg)) est la somme des énergie internes des sous-systémes,

U (Sl (T1), 52 (T2)) =T 5 (Th) + T3 S (1) (21)

L’énergie libre du systéme F' et obtenue ne faisant une transformation de Legendre de I’énergie interne
par rapport aux entropies S et Ss,

ou (Sl (T1), S2 (Tz)) ou (51 (T1) , S2 (T2)>

F(T,To) =U (Sl (Th), S (T2)> - e Sy (Th) — e S (T3)
(22)
Compte tenu de I’énergie interne (21) et des températures des cylindres,
aU (51 (1), Ss (Tg)) U (sl (T1), Ss (Tg))
T1 = et T2 = (23)
051 (Th) 0S5 (1)

L’énergie libre du systéme (22) est nulle,

F(Ty,Ty) =0 (24)
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Probléme 2: Cycle calorifique critique d’un fluide de van der Waals (21 points)

Lo Dl Dl Dl De Ll Do DLl Ds [Llo Lo [ Ju [ Jia [ Juo [ Jua [ Jis
[ e e D Do [0 [

Laisser les cases blanches vides

p T
A A
T*---1 < 2 < 4

Y i

1

1

_ _ i

p g1 |

] ] 1

1 | 1

I 1 I

I 1 I

- - ' > S
S S3 Sy

Un fluide de van der Waals constitué de N moles est contenu dans un cylindre fermé. Le cycle calorifique
que subit ce fluide biphasique est formé de cinq processus :

e 1 — 2 détente adiabatique réversible,

e 2 — 3 wvaporisation a la pression p~ et la température T~ de la source froide,

e 3 — 4 compression isochore réversible & volume V3,

e 4 — 5 compression isotherme réversible & la température T de la source chaude,
e 5 — 1 compression isotherme réversible & la température T de la source chaude.

Le cycle passe par le point critique qui correspond a I’état 5 sur le diagramme (p, V'). La courbe de saturation
est représentée en traitillé. L’équation d’état du fluide de van der Waals est donnée par,

_ NRT  aN?
T V-Nb V2

p

et son énergie interne et sa différentielle s’écrivent,

a N? a N?
v et dU:cNRdTJrWdV

U=cNRT —

Les réponses doivent étre exprimées en termes de la température 7' de la source chaude, de la température
T~ de la source froide, des volumes Vi, Vo, V3, de la pression p~ et du nombre N de moles de fluide, de la
constante des gaz parfaits R, des parameétres a, b et ¢ et des grandeurs scalaires spécifiées dans 1’énoncé de
chaque question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suitvantes
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1. (3 points) Esquisser qualitativement le diagramme (7,.S) du cycle sur I’énoncé ci-contre en indiquant
les états 1 a 5 et en définissant 'orientation des processus avec des fléches.

La détente adiabatique 1 — 2 est représentée sur le diagramme (T',.S) par un segment vertical de
température décroissante,

S1 = S5 = cste et TH=Ty>T,=T" (1)

La vaporisation isotherme 2 — 3 est représentée sur le diagramme (7,S) par segment horizontal
d’entropie croissante,

T_ =T, =T; = cste et So < S3 (2)

La compression isochore 3 — 4 est représentée sur le diagramme (7, S) par une courbe convexe de
température croissante et d’entropie croissante,

T 1y Sy — Ss
S = =2)>1 3

-1 P ( cNR )
car & volume constant la différentielle de I’entropie est la méme que celle d’un gaz parfait,

_dU _ ¢NRdT

ds T T

+
ainsi AS3 4 =8S4— S3=cNRIn <T4> =c¢NRIn <T) (4)
Tg T-

La compression isotherme 4 — 5 — 1 est représentée sur le diagramme (7', S) par un segment horizontal
d’entropie décroissante,

T, =T, =T5 =T) = cste et Sy > S5 > 51 (5)

2. (2 points) Durant un processus quelconque, montrer que la différentielle de 'entropie dS s’écrit,

cNRdAT " NRdAV
T V — Nb

s =

D’aprés la relation de Gibbs, durant un processus quelconque, la différentielle de ’entropie s’écrit,

1 pd -NRdT N? NRdAV N2 NRdIT NRd
£+p(V: cNR a av + R a dV:C R n RdAV (6)

ds = —
o T T T +VQT V- Nb V2T T V- Nb

3. (3 points) Calculer le travail Wy_, 5 effectué sur le fluide de van der Waals par Uenvironnement durant
la compression isotherme 4 — 5 & température 7. Indice : si vous ne parvenez pas & identifier le
volume critique V5, supposez le connu.

Le travail effectué sur le fluide de van der Waals durant la compression isotherme 4 — 5 & température
T+ s’écrit,

5 Vs qv Vs qv
Wy 5:—/pdV:—NRT+/ ———— +aN? — (7)
- 4 v, V— Nb v, V2
ou V3 = Vj. Le résultat de l'intégrale (7) s’écrit,
Vs — Nb 1 1
Wiss =NRT ™ In| —— ) —aN? | — - — 0 8
i ! <V5 - Nb) ‘ (Vs V3> ~ ®)

L’état 5 de température T sur le diagramme (p, V') correspond au point critique. Il est défini par le
fait que les dérivées partielles premiére et deuxiéme de la pression par rapport au volume s’annulent,

op(V,T)

*p(V,T)
57 =0 ot i AN

= 9
v ave 0 (9)

Vs, T+
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ce qui se traduit par les identités,

NRT 2aN? 2NRT™ 6aN?
- 5 + — =0 et T = — =0 (10)

En divisant la premiére par la deuxiéme, on obtient le volume critique,
Vs =3 Nb (11)

A Taide du volume critique (11), le travail (8) effectué durant la compression isotherme 4 — 5 a
température TF devient,

Vi — Nb 11
— NRT I (B=20) N (- 12
Wins = NRE n( 2Nb ) ¢ (3Nb V3>>0 (12)

ot V3 > Vi = 3 Nb.

. (2 points) Calculer la variation d’énergie libre AFy_,; du fluide de van der Waals durant la compression
isotherme 4 — 1 & température 7"

Durant la compression isotherme 4 — 1, le fluide de van der Waals est & ’équilibre thermique avec la
source chaude & température T qui est un réservoir de chaleur. Ainsi, la variation d’énergie libre est
égale au travail effectué sur le fluide,

' nooav av
AFy sy =Wy =— dV =—NRT* —_— N2/ — 1
41 41 L pdV R /Vg VN ¢ v V2 (13)

ou V3 = Vj. Le résultat de l'intégrale (13) s’écrit,

i Vi— Nb 5 (1 1
AF. = - NRT ' In|—— | —aN?(——- — 14
4-51 R II(Vg— Nb> a <‘/1 Vg) >0 ( )

. (2 points) Déterminer le coefficient de compressibilité isotherme yr et la chaleur latente molaire de
vaporisation .4 au point critique dans 1'état 5 quasiment sans faire de calcul.

Compte tenu de la premiére condition (9), le coefficient de compressibilité isotherme xr diverge au
point critique,

10V (pT)

A VAR

-1
) =00 (15)
Vs, T+

ou le signe est positif lorsqu’on tend vers le point critique le long de I'isotherme critique. Au point

_ 1 fop(V.T)
ps.T+ A B%

critique & température T, il n’y a pas de discontinuité de ’entropie, ce qui signifie que I’entropie
molaire du liquide s, est égale & '’entropie molaire du gaz sg,

f/;ﬁg = T+ (Sg — 8(/) =0 (16)

. (4 points) Calculer la chaleur 2,5 fournie au liquide de van der Waals durant la vaporisation et
I’exprimer explicitement en termes de la pression de vaporisation p~. En déduire la chaleur latente
molaire de vaporisation ¢,_,, qu’il faut fournir au liquide de van der Waals pour qu’il se transforme
entiérement en gaz durant la vaporisation 2 — 3.

La vaporisation 2 — 3 est un processus isobare & pression p~. Par conséquent, le travail réalisé par le
fluide de van der Waals sur I’environnement & la pression de vaporisation pt s’écrit,

3 V3
wmz—/ pdvz—p—/ AV = —p (Vs — V) <0 (17)
2 V

e
2
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La variation d’énergie interne du fluide de Van der Waals durant la vaporisation & température con-
stante T~ s’écrit,
1

. 1
AUs g = Us — Uy = N2 | — — — 1
Uss3 =Us — Us 0(V2 V3>>0 (18)

Compte tenu du premier principe, la chaleur fournie au fluide durant la vaporisation 2 — 3 s’écrit,

> 1 1 _
Q23 =AUz 3 — Wo 3 = N?a|—— — +p (VS - V2) >0 (19)
Voo V3
La chaleur latente molaire de vaporisation £y, est le rapport de la chaleur fournie Q2—3 au fluide de
van der Waals par la source froide durant la vaporisation et du nombre N de moles,

| : 11 -
eng%zNa (— >+€V(V3— Vi) >0 (20)

. (3 points) Durant la détente adiabatique 1 — 2, montrer que la température T et le volume V du
fluide de van der Waals satisfont la relation suivante,

c+1
c

T(V—Nb" '=cste on 5=

D’apreés la relation de Gibbs, durant un processus adiabatique réversible, la différentielle de I’entropie (15)
est nulle,

¢cNRdII' NRAV

AS=—F—+y N~

0 (21)

Par conséquent, la variation d’entropie durant la détente adiabatique 1 — 2 est nulle aussi,

5 2 dr V2 av
AS; 9 = dS=cNR — +NR — =0 (22)
- S n T v, V—Nb
La solution de cette relation intégrale est,
T Vo — Nb
AS; .o =cNR In <Ti> + NR In (M) =0 (23)

En divisant la relation (23) par la capacité thermique isochore ¢ N R, on obtient 'identité,
1
Ty Vo— Nb\-°
In [ — In{——=] =0 24
n<T1>+n(V1—Nb (24)
Compte tenu de 'inverse du paramétre c,
1
—=~5-1 25
o= (25)

l'identité (24) peut étre remise sous la forme,

riny— 1
m (205 M)_l =0 (26)
T, (Vi — Nb)"

Par conséquent, ’argument du logarithme doit étre égal a 1'unité,
Ty (Vo — Nb)~ ' =T, (V; — Nb)'™* (27)
ce qui implique que,

T(V — Nb)"™ ' = cste (28)
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8. (BONUS : 2 points) La vaporisation peut étre modélisée comme une réaction chimique a de vitesse
de réaction €2, entre le liquide, considéré comme le réactif de coefficient stoechiométrique v,y et de
potentiel chimique pg, et le gaz, considéré comme le produit de coefficient stoechiométrique v, et
de potentiel chimique pg. Déterminer I'affinité A, de la réaction chimique et en déduire la source
d’entropie X g durant la vaporisation.

Comme le liquide de van der Waals est entiérement transformé en gaz de van der Waals durant
la vaporisation 2 — 3, le coeflicient stoechiométrique négatif du liquide est l'opposé du coefficient
stoechiométrique positif du gaz,

Vag = — Var > 0 (29)

Durant la vaporisation, il y a coexistence des phases liquide et gazeuse, ce qui signifie que le liquide et
le gaz sont a ’équilibre chimique,

g = e (30)
L’affinité chimique de la vaporisation est nulle,

-’4(1, - - Z Vaa oo = —Vat bt — Vag g = 0 (31)
ac{l,g}

Ainsi, compte tenu du fait que le fluide de van der Waals est a I’équilibre thermique et mécanique avec
la source froide & température T~ durant la vaporisation, la source d’entropie est nulle,

1
XS - F .Aa Sla - 0 (32)

ce qui signifie que la vaporisation est réversible dans ce cycle.
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Probléme 3: Compression isotherme irréversible d’un gaz parfait (21 points)

T PO P S P B R B T I I T A O Y A
[l e Dis Do [0 [

Laisser les cases blanches vides

Etat initial Etat intermédiaire Etat final

Crmen)
ST

On modélise la compression isotherme d’un systéme thermodynamique fermé constitué de N moles de gaz
parfait enfermé dans un cylindre vertical par un piston de masse M et d’aire A. Le cylindre est placé dans
une enceinte dans laquelle on a fait le vide. Il n’y a donc pas de pression atmosphérique & considérer dans
ce probléme. De plus, le systéme est maintenu & température constante T par contact avec un réservoir de
chaleur.

Dans I’état initial ¢, avant la compression, le gaz parfait de pression p; est a I’équilibre mécanique avec le
piston qui exerce une pression p** sur le gaz. On pose alors un poids de masse M’ sur le piston ce provoque
la compression du gaz parfait & pression p due a la pression p®** exercée sur le gaz par le piston et le poids :
c’est I’état intermédiaire de compression. Dans ’état final f, aprés la compression, le gaz parfait de pression

py a atteint I’équilibre mécanique avec le piston et le poids qui exercent une pression pj?"t

ext

sur lui.

ext

pi=p> et p<pT=pf et  py=p;f

Le travail effectué de maniére irréversible par le piston et le poids sur le gaz durant la compression isotherme
de I’état initial ¢ & I’état final f s’écrit,

f
Wisy == [ portav

Durant la compression isotherme, la source d’entropie du systéme s’écrit,

1 .
ES — T (p_ pext) 4

L’entropie générée de maniére irréversible dans le systéme lors de la compression isotherme est définie comme,

f ty
Syinf = / 0S8y = / Ygdt
A t;

i

Les réponses doivent étre exprimées en termes de la masse M du piston, de la masse M’ du poids, du nombre
de moles N de gaz parfait, de la température T', de la constante des gaz parfaits R et des grandeurs spécifiées
dans I’énoncé de chaque question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suivantes
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1. (3 points) Montrer que la variation d’entropie s’écrit en fonction de la chaleur Q;_, s restituée au
réservoir de chaleur durant la compression isotherme i — f,

. I
S=[q+25':£+25 (1)

L’intégration de I’équation de bilan durant la compression isotherme & température 7' constante par
rapport au temps du temps initial ¢; au temps final ¢y s’écrit,

ty . 1 ty ty
Sdt:? Ith—l—/ Ygdt (2)

t; t; t;

Durant la compression isotherme ¢ — f, la variation d’entropie AS,_, ¢ s’écrit,

Sy ty
AS; = / dS = / Sdt (3)
t;

S

la chaleur Q);_, s restituée au réservoir de chaleur est de la forme,

ﬂf ‘tf
Qisy = / 6Q = / I dt (4)
J1 Jt;

i

et I'entropie Sy ;—, 5 générée de maniére irréversible s’écrit,

f ty
ngf:/ 552:/ S dt (5)
7 t

i

En substituant les grandeurs physiques (3), (4) et (5) dans ’équation de bilan intégrée par rapport au
temps (2) durant la compression isotherme, on obtient le résultat cherché.

2. (3 points) Montrer que les rapports de la pression finale ps et de la pression initiale p; ainsi que du
volume final V¢ et du volume initial V; s’écrivent,

M v, M
Pl = o A=
Di M Vi M+ M

Dans l'é¢tat d’équilibre mécanique initial ¢, la pression p; du gaz parfait est la pression p**

piston de masse M d’aire A sur le gaz. Dans I'état d’équilibre mécanique final f, la pression py du gaz
parfait est la pression pJ?Xt exercée par le piston et le poids de masse totale M + M’ sur le gaz. Ainsi,

exercée le

on en déduit les relations suivantes,

pi=pt=—" et pp=pit=——— (6)

ou g est I'intensité du champ gravitationnel. Ainsi, le rapport des pressions s’écrit,

ﬁ—pﬁXt—M+M/:1+%/

i P>t M M ")

Compte tenu de I’équation d’état du gaz parfait, les volumes et les pressions sont liés par la relation,
piVi=pgVy=pV =NRT (8)

Ainsi le rapport des volumes s’écrit,

=2 _— 9
Vi  p; NRT p; M~+M ©)
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3. (3 points) Calculer le travail W;_, ; effectué par le piston et le poids sur le gaz et la chaleur restituée
Qi—¢ au réservoir de chaleur durant la compression isotherme irréversible i — f.

Compte tenu de I’équation d’état du gaz parfait (8) et des relations entre les pressions (7),

pcxt — p]?xt =py (10)

on obtient le travail effectué par le piston et le poids sur le gaz durant la compression isotherme
irréversible ¢ — f,

f !
Wiy = — / ptdV = —py / AV = —ps (Vi = Vi)
i 7

(11)
NRT NRT M’
:_pf<— >:<pf—1)NRT:,NRT>o
Pf i Di M
La variation d’énergie interne du gaz parfait durant la compression isotherme est nulle,

AUi_>f :CV ATi_>f :CNRATi_,f =0 (12)
car AT;,y = 0. A l'aide du premier principe, on en déduit alors la chaleur restituée au réservoir de
chaleur,

M/
Qimg =AUing— Wing=—Wip = < - pf) NRT = — 5> NRT <0 (13)
b

4. (2 points) Calculer la variation d’entropie AS;_,; du gaz parfait durant la compression isotherme
irréversible i — f.

La relation de Gibbs pour la compression isotherme du gaz parfait s’écrit,
dU=TdS — pdV =CydT =0 (14)
Ainsi, compte tenu de I’équation d’état du gaz parfait (8), la différentielle de l'entropie est,

pdV  pd d
_pdv_pdv_ R dV (15)

45 T T |4

En intégrant la différentielle de entropie (15) compte tenu du rapport des volumes (9), on obtient la
variation de I’entropie,

Sy fod Vid
AS’Hf:/ dS:/ ¥:NR/ ‘Y_NR1H<‘V/J‘)
S; i Vi i

M M

5. (2 points) Montrer que P'entropie Sy, générée de maniére irréversible dans le systéme durant la

(16)

compression isotherme irréversible i — f s’écrit,

M’ M
SZHszR(M“n (M+M>)

Solution 1: D’apreés I’équation de bilan d’entropie intégrée par rapport au temps durant la compression
irréversible ¢ — f, I'entropie générée Sx.;_,; dans le systéme s’écrit,

Qinsy

Syimsf =ASiLf — T

(17)

En substituant la variation d’entropie (16) et la chaleur (13) échangée durant la compression irréversible
i — [ dans l'entropie générée (17), on obtient le résultat cherché.
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Solution 2: Compte tenu de la relation p®** = p, Pentropie Sy;;—, s générée de manicre irréversible
dans le systéme s’écrit,
ty 'ty . f pdV  p Vi
Ssicsf = Sgdt = —(p—pYVdt= | —/ - dv 18
S f /t S /f T([) p ) a /Z T T Jy (18)

Compte tenu de I’équation d’état du gaz parfait (8), Uentropie (18) devient,

FdV by ! Lf pr
i =N _— = == dV = | — | = = — Vi 1
S —f R/i v T 1- V NR H<VZ) T ([/f V) ( 9)

Compte tenu des rapports entre les pressions (7) et les volumes (9), Uentropie (19) devient,

m e . M/ M’
Sgimp=—NRn (?‘) +NR (Zf - 1) = NR (M —In (1 + M)) (20)

ce qui donne le résultat cherché.

. (3 points) Dans la limite ot le rapport des masses est suffisamment faible,

M/
In(l+z)~=z ol T=or et <zl

montrer explicitement que la compression devient réversible et en déduire explicitement une relation
entre les pressions p et p®** dans ce cas.

Dans la limite ou le rapport des masses x = M'/M est suffisamment faible, Pentropie générée par
irréversibilité dans le systéme s’annule,

M M MM
Seinf=NR(— — {1+ ) )~ NR(Z - 22 ) =0 21
Biof ( o < L )) ( M M ) (1)

ce qui signifie que dans cette limite, la compression est réversible. On en déduit ’identité suivante,

f ty
Szl‘ﬁf = / 0SSy = / Ygdt =0 (22)
i t
Par conséquent, la source d’entropie est nulle,
Zw:l(])—pcx‘[')VZO (23)
ST

ot V < 0. On en conclut que le gaz parfait et le piston avec le poids sont & I’équilibre mécanique,

p=pt (24)

. (3 points) Calculer le travail I/Vio_> ¥ effectué sur le gaz par le piston et le poids durant une compression
réversible i — f et montrer que les travaux effectués de maniére réversible et irréversible sont égaux,
c’est-a-dire W,°, 5 = Wi, dans la limite ou le rapport des masses est suffisamment faible, c’est-a-dire

x=M/M< 1.

Le travail Wig ¥ effectué sur le gaz par le piston et le poids durant une compression réversible i — f
s’écrit,

f Vy
l/’[/'i%f:— / pdV:—NRT/ dvvz—NRTln (?) = NRT In <Zf) (25)
7 Vi 1 1

Dans la limite ot le rapport des masses est suffisamment faible M’/M < 1, compte tenu du rapport
des pressions (7), le travail effectué durant une compression réversible est égal au travail effectué durant
une compression irréversible,

M’ M’

0 = 7 —
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8. (BONUS : 2 points) Montrer qu’en général la compression isotherme est irréversible explicitement
4 I’aide de ’entropie Sy ;.

Solution 1: Afin de déterminer le domaine en M’/M ou ce signe est positif, on calcule le zéro de
I'entropie Sy,

M’ M’ M’
Ssisg R(M n( + M)) 0 si i 0 (27)

La dérivée de 'entropie Sx.;—, y par rapport au rapport des masses est positive,

dSZ,,j_)f _NR <1 B M’ M’

= NR —
) R >0 si 7

>0 (28)

M’

M
b 1

d(%7) A

Ainsi, I'entropie Sy ;s générée dans le systéme est positive et la compression est irréversible,
Ssisg >0 (29)

Solution 2: Etant donné que la pression p®** exercée par le piston et le poids sur le gaz est supérieure &
la pression p du gaz durant la compression, c’est-a-dire p®* > p, et que le volume diminue, c’est-a-dire
V < 0, la source d’entropie est positive,

Yo = % (p— p) V>0 (30)

Ainsi, I'entropie Sy;;— s générée dans le systéme est positive et la compression est irréversible,

"ty 1 -f
SZ i—f = / ZS dt = T / (p - peXt) dV >0 (31)
t Ji

g

car dV = Vdt < 0.
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