
y 1/1 y

Enseignant : Dr. Sylvain Bréchet
Examen : physique générale II
Date : vendredi 21 juin 2024
Durée : 9h15 - 12h45

1
Corrigé

N◦ SCIPER :

SECTION :

SALLE/PLACE : /

L’examen est constitué de 3 problèmes qui totalisent 57 points
avec 4 points bonus additionnels. Chaque problème comporte
un énoncé illustré et détaillé sur la page de gauche et des ques-
tions sur la page de droite. Les développements mathématiques
et physiques d’un problème doivent être effectués et rédigés pro-
prement sur les pages quadrillées à la fin du problème.

N◦ VISA POINTS

1

2

3

Consignes

• Préparer votre carte Camipro, la poser visiblement sur la table et vérifier votre N◦ Sciper.
• Attendre le début de l’épreuve avant d’ouvrir le cahier d’examen.
• Le formulaire de l’examen (1 page A4 recto-verso) est autorisé.
• L’utilisation de tout appareil électronique est interdite.
• Un dictionnaire bilingue non annoté est autorisé pour les étudiant.e.s non francophones.
• Effectuer les développements mathématiques et physiques d’un problème sur les pages
quadrillées à la fin du problème.

• Retranscrire les réponses sur les pointillés sous chaque question dans les espaces réservés à cet
effet.

• Utiliser un stylo à encre noir ou bleu foncé (éviter d’utiliser un crayon) et effacer proprement
avec du correcteur blanc si nécessaire.

• Ne pas dégrafer le cahier d’examen et laisser le tableau et les cases blanches vides.
• Les feuilles de papier brouillon ne seront pas ramassées et pas corrigées.
• Il est recommandé de résoudre les questions bonus à la fin de l’examen si le temps le permet.
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Problème 1 : Frottement stationnaire entre des cylindres métalliques (19 points)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19

Laisser les cases blanches vides

Un système thermodynamique, formé de deux cylindres métalliques rigides de même axe de symétrie ver-
tical, est en régime stationnaire. Le sous-système 1 est constitué du cylindre supérieur qui est entraîné
par un moment de force extérieure M ext

1 et tourne à vitesse angulaire constante ω1 = cste dans le sens
trigonométrique autour de l’axe de symétrie en vue d’avion. Le cylindre inférieur est le sous-système 2 qui
est maintenu immobile.

En régime stationnaire, le moment de force de frottement exercé par le cylindre inférieur 2 sur le cylindre
supérieur 1 de rayon r1 est M fr

1 = −λ1 r1 ω1 où λ1 > 0. Le moment cinétique du cylindre supérieur est
L1 = I1 ω1 où I1 > 0 est son moment d’inertie par rapport à l’axe de rotation.

Les cylindres 1 et 2 sont des sous-systèmes simples, rigides, constitués de N1 et N2 moles d’atomes respective-
ment. L’interface entre les cylindres est diatherme et imperméable. Le cylindre 1 est maintenu à température
constante T1 par le réservoir chaud 0 et le cylindre 2 est maintenu à température constante T2 par le réservoir
froid 0. Ces deux réservoirs de chaleur 0 sont considérés comme l’environnement du système. Le cylindre
supérieur a la même vitesse angulaire que le réservoir chaud avec lequel il est à l’équilibre thermique. Les
températures des cylindres satisfont la relation d’ordre T1 > T2.

Etant donné que le système est en régime stationnaire, l’énergie, l’énergie cinétique, l’énergie interne et
l’entropie de chaque cylindre ainsi que le moment cinétique du cylindre supérieur sont des constantes.

Les réponses doivent être exprimées en termes des températures T1 et T2, des nombres de moles d’atomes
N1 et N2, du moment d’inertie I1, de la norme de la vitesse angulaire ω1, du coefficient λ1, du rayon r1, de
la constante des gaz parfaits R et des grandeurs scalaires spécifiées de l’énoncé de chaque question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suivantes
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1. (2 points) Ecrire l’énergie totale E du système.

Les variables d’état extensives du système sont le moment cinétique L1 (ω1) du cylindre supérieure 1

et les entropies S1 (T1) et S2 (T2) des deux cylindres qui sont fonctions de leurs températures T1 et
T2. L’énergie totale E

(
L1 (ω1) , S1 (T1) , S2 (T2)

)
du système est la somme de l’énergie cinétique de

rotation du cylindre supérieur 1 et des énergies internes des deux cylindres,

E
(
L1 (ω1) , S1 (T1) , S2 (T2)

)
=

L2
1

2 I1
+ U1

(
S1 (T1)

)
+ U2

(
S2 (T2)

)
(1)

Compte tenu du moment cinétique du cylindre supérieur,

L1 (ω1) = I1 ω1 (2)

et des énergies internes des deux cylindres métalliques,

U1

(
S1 (T1)

)
= 3N1RT1 et U2

(
S2 (T2)

)
= 3N2RT2 (3)

l’énergie totale (1) devient,

E
(
L1 (ω1) , S1 (T1) , S2 (T2)

)
=

1

2
I1 ω

2
1 + 3R (N1 T1 +N2 T2) (4)

2. (3 points) Déterminer la puissance extérieure P ext exercée sur le système. En déduire le courant de
chaleur total IQ entre le système et les réservoirs de chaleur (l’environnement) en régime stationnaire.

En régime stationnaire, le moment cinétique du premier cylindre L1 est constant. Ainsi, l’équation de
bilan de moment cinétique appliquée au cylindre supérieur 1 s’écrit,

L̇1 = M ext
1 + M fr

1 = 0 ainsi M ext
1 = −M fr

1 (5)

où le moment de force de frottement M fr
1 est intérieur au système mais extérieur au cylindre 1. La

puissance extérieure due au moment de force extérieur d’entraînement M ext
1 s’écrit alors,

P ext = M ext
1 · ω1 = −M fr

1 · ω1 = λ1 r1 ω
2
1 > 0 (6)

En régime stationnaire, l’énergie totale E est constante, c’est-à-dire Ė = 0. Etant donné que les
cylindres sont rigides et fermés, le premier principe s’écrit,

Ė = IQ + P ext = 0 (7)

Ainsi, le courant de chaleur qui évacue la chaleur dissipée par frottement dans le système s’écrit,

IQ = −P ext = −λ1 r1 ω
2
1 < 0 (8)

3. (3 points) Déterminer le courant d’entropie IS entre le système et les réservoirs de chaleur et la source
d’entropie ΣS du système en termes des courants d’entropie I 1→2

S et I 2→1
S entre les sous-systèmes en

régime stationnaire.

En régime stationnaire, les équations de bilan d’entropie des deux cylindres s’écrivent,

Ṡ1 = I 0→1
S + I 2→1

S = 0 ainsi I 0→1
S = − I 2→1

S

Ṡ2 = I 0→2
S + I 1→2

S = 0 ainsi I 0→2
S = − I 1→2

S

(9)

Le courant d’entropie IS entre l’environnement et le système est la somme des courants d’entropie
entre les réservoirs de chaleur et les cylindres 1 et 2,

IS = I 0→1
S + I 0→2

S = −
(
I 1→2
S + I 2→1

S

)
< 0 (10)y y
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En régime stationnaire, l’équation de bilan d’entropie du système s’écrit,

Ṡ = IS + ΣS = 0 (11)

Par conséquent, la source d’entropie décrivant le transfert irréversible de chaleur entre les cylindres
est,

ΣS = − IS = I 1→2
S + I 2→1

S > 0 (12)

4. (3 points) Montrer que la somme des courants de chaleur I 1→2
Q et I 2→1

Q entre les deux cylindres en
régime stationnaire s’écrit,

I 1→2
Q + I 2→1

Q = λ1 r1 ω
2
1

En régime stationnaire, le premier principe appliqué à chaque cylindre s’écrit,

U̇1 = I 0→1
Q + I 2→1

Q = 0 ainsi I 0→1
Q = − I 2→1

Q

U̇2 = I 0→2
Q + I 1→2

Q = 0 ainsi I 0→2
Q = − I 1→2

Q

(13)

Le courant de chaleur est la somme des courants de chaleur entre le réservoir et le sous-systèmes,

IQ = I 0→1
Q + I 0→2

Q = −
(
I 2→1
Q + I 1→2

Q

)
(14)

Compte tenu de la relation (8), la somme des courants de chaleur entre les deux sous-systèmes s’écrit,

I 1→2
Q + I 2→1

Q = − IQ = P ext = λ1 r1 ω
2
1 > 0 (15)

5. (2 points) Montrer que les courants de chaleur I 1→2
Q et I 2→1

Q entre les deux cylindres en régime
stationnaire satisfont la relation suivante,

T1 I
1→2
Q + T2 I

2→1
Q > 0

Les courants de chaleurs s’écrivent en termes des courants d’entropie comme,

I 1→2
Q = T2 I

1→2
S et I 2→1

Q = T1 I
2→1
S (16)

Compte des relations (16) entre les courants, la source d’entropie (12) pour le transfert irréversible de
chaleur est exprimée en termes des courants de chaleur comme,

ΣS =
I 1→2
Q

T2
+
I 2→1
Q

T1
=
T1 I

1→2
Q + T2 I

2→1
Q

T1 T2
> 0 (17)

6. (3 points) Durant un intervalle de temps quelconque ∆ti→f = tf − ti, déterminer en régime station-
naire la chaleur échangée Q+

i→f entre le cylindre supérieur et le réservoir chaud à température T1, la
chaleur échangée Q−i→f entre le cylindre inférieur et le réservoir froid à température T2, et le travail
W ext
i→f effectué sur le système en termes des courants de chaleur I 1→2

Q et I 2→1
Q entre les cylindres.

En régime stationnaire, compte tenu de la relation (13), la chaleur échangée entre le cylindre 1 et le
réservoir chaud s’écrit,

Q+
i→f =

∫ tf

ti

I 0→1
Q dt = I 0→1

Q

∫ tf

ti

dt = I 0→1
Q ∆ti→f = − I 2→1

Q ∆ti→f (18)

et la chaleur échangée entre le cylindre 2 et le réservoir froid s’écrit,

Q−i→f =

∫ tf

ti

I 0→2
Q dt = I 0→2

Q

∫ tf

ti

dt = I 0→2
Q ∆ti→f = − I 1→2

Q ∆ti→f (19)

Compte tenu de la relation (15), le travail extérieur effectué sur le système durant un intervalle de
temps quelconque ∆ti→f s’écrit,

W ext
i→f =

∫ tf

ti

P ext dt = P ext
∫ tf

ti

dt = P ext ∆ti→f =
(
I 1→2
Q + I 2→1

Q

)
∆ti→f > 0 (20)
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7. (3 points) Déterminer l’énergie libre F (T1, T2) du système.

L’énergie interne du système U
(
S1 (T1) , S2 (T2)

)
est la somme des énergie internes des sous-systèmes,

U
(
S1 (T1) , S2 (T2)

)
= T1 S1 (T1) + T2 S2 (T2) (21)

L’énergie libre du système F et obtenue ne faisant une transformation de Legendre de l’énergie interne
par rapport aux entropies S1 et S2,

F (T1, T2) = U
(
S1 (T1) , S2 (T2)

)
−
∂U
(
S1 (T1) , S2 (T2)

)
∂S1 (T1)

S1 (T1)−
∂U
(
S1 (T1) , S2 (T2)

)
∂S2 (T2)

S2 (T2)

(22)

Compte tenu de l’énergie interne (21) et des températures des cylindres,

T1 =
∂U
(
S1 (T1) , S2 (T2)

)
∂S1 (T1)

et T2 =
∂U
(
S1 (T1) , S2 (T2)

)
∂S2 (T2)

(23)

L’énergie libre du système (22) est nulle,

F (T1, T2) = 0 (24)

y y
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Problème 2 : Cycle calorifique critique d’un fluide de van der Waals (21 points)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21

Laisser les cases blanches vides

1

2 3

4

1

2 3

4

Un fluide de van der Waals constitué de N moles est contenu dans un cylindre fermé. Le cycle calorifique
que subit ce fluide biphasique est formé de cinq processus :

• 1 → 2 détente adiabatique réversible,

• 2 → 3 vaporisation à la pression p− et la température T− de la source froide,

• 3 → 4 compression isochore réversible à volume V3,

• 4 → 5 compression isotherme réversible à la température T+ de la source chaude,

• 5 → 1 compression isotherme réversible à la température T+ de la source chaude.

Le cycle passe par le point critique qui correspond à l’état 5 sur le diagramme (p, V ). La courbe de saturation
est représentée en traitillé. L’équation d’état du fluide de van der Waals est donnée par,

p =
NRT

V − Nb
− aN2

V 2

et son énergie interne et sa différentielle s’écrivent,

U = cNRT − aN2

V
et dU = cNRdT +

aN2

V 2
dV

Les réponses doivent être exprimées en termes de la température T+ de la source chaude, de la température
T− de la source froide, des volumes V1, V2, V3, de la pression p− et du nombre N de moles de fluide, de la
constante des gaz parfaits R, des paramètres a, b et c et des grandeurs scalaires spécifiées dans l’énoncé de
chaque question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suivantes
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1. (3 points) Esquisser qualitativement le diagramme (T, S) du cycle sur l’énoncé ci-contre en indiquant

les états 1 à 5 et en définissant l’orientation des processus avec des flèches.

La détente adiabatique 1 → 2 est représentée sur le diagramme (T, S) par un segment vertical de
température décroissante,

S1 = S2 = cste et T+ = T1 > T2 = T− (1)

La vaporisation isotherme 2 → 3 est représentée sur le diagramme (T, S) par segment horizontal
d’entropie croissante,

T− = T2 = T3 = cste et S2 < S3 (2)

La compression isochore 3 → 4 est représentée sur le diagramme (T, S) par une courbe convexe de
température croissante et d’entropie croissante,

T+

T−
=
T4

T3
= exp

(
S4 − S3

cNR

)
> 1 (3)

car à volume constant la différentielle de l’entropie est la même que celle d’un gaz parfait,

dS =
dU

T
=
cNRdT

T
ainsi ∆S3→4 = S4 − S3 = cNR ln

(
T4

T3

)
= cNR ln

(
T+

T−

)
(4)

La compression isotherme 4→ 5→ 1 est représentée sur le diagramme (T, S) par un segment horizontal
d’entropie décroissante,

T+ = T4 = T5 = T1 = cste et S4 > S5 > S1 (5)

2. (2 points) Durant un processus quelconque, montrer que la différentielle de l’entropie dS s’écrit,

dS =
cNRdT

T
+
NRdV

V − Nb

D’après la relation de Gibbs, durant un processus quelconque, la différentielle de l’entropie s’écrit,

dS =
dU

T
+
p dV

T
=

cNRdT

T
+
aN2

V 2T
dV +

NRdV

V − Nb
− aN2

V 2T
dV =

cNRdT

T
+
NRdV

V − Nb
(6)

3. (3 points) Calculer le travail W4→5 effectué sur le fluide de van der Waals par l’environnement durant
la compression isotherme 4 → 5 à température T+. Indice : si vous ne parvenez pas à identifier le
volume critique V5, supposez le connu.

Le travail effectué sur le fluide de van der Waals durant la compression isotherme 4→ 5 à température
T+ s’écrit,

W4→5 = −
∫ 5

4

p dV = −NRT+

∫ V5

V3

dV

V − Nb
+ aN2

∫ V5

V3

dV

V 2
(7)

où V3 = V4. Le résultat de l’intégrale (7) s’écrit,

W4→5 = NRT+ ln

(
V3 − Nb

V5 − Nb

)
− aN2

(
1

V5
− 1

V3

)
> 0 (8)

L’état 5 de température T+ sur le diagramme (p, V ) correspond au point critique. Il est défini par le
fait que les dérivées partielles première et deuxième de la pression par rapport au volume s’annulent,

∂p (V, T )

∂V

∣∣∣∣
V5,T+

= 0 et
∂2p (V, T )

∂V 2

∣∣∣∣
V5,T+

= 0 (9)

y y
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ce qui se traduit par les identités,

− NRT+

(V5 − Nb)
2 +

2 aN2

V 3
5

= 0 et
2NRT+

(V5 − Nb)
3 −

6 aN2

V 4
5

= 0 (10)

En divisant la première par la deuxième, on obtient le volume critique,

V5 = 3Nb (11)

A l’aide du volume critique (11), le travail (8) effectué durant la compression isotherme 4 → 5 à
température T+ devient,

W4→5 = NRT+ ln

(
V3 − Nb

2Nb

)
− aN2

(
1

3Nb
− 1

V3

)
> 0 (12)

où V3 > V5 = 3Nb.

4. (2 points) Calculer la variation d’énergie libre ∆F4→1 du fluide de van der Waals durant la compression
isotherme 4→ 1 à température T+.

Durant la compression isotherme 4→ 1, le fluide de van der Waals est à l’équilibre thermique avec la
source chaude à température T+ qui est un réservoir de chaleur. Ainsi, la variation d’énergie libre est
égale au travail effectué sur le fluide,

∆F4→1 = W4→1 = −
∫ 1

4

p dV = −NRT+

∫ V1

V3

dV

V − Nb
+ aN2

∫ V1

V3

dV

V 2
(13)

où V3 = V4. Le résultat de l’intégrale (13) s’écrit,

∆F4→1 = −NRT+ ln

(
V1 − Nb

V3 − Nb

)
− aN2

(
1

V1
− 1

V3

)
> 0 (14)

5. (2 points) Déterminer le coefficient de compressibilité isotherme χT et la chaleur latente molaire de
vaporisation ``→g au point critique dans l’état 5 quasiment sans faire de calcul.

Compte tenu de la première condition (9), le coefficient de compressibilité isotherme χT diverge au
point critique,

χT = − 1

V5

∂V (p, T )

∂p

∣∣∣∣
p5,T+

= − 1

V5

(
∂p (V, T )

∂V

∣∣∣∣
V5,T+

)−1

=∞ (15)

où le signe est positif lorsqu’on tend vers le point critique le long de l’isotherme critique. Au point
critique à température T+, il n’y a pas de discontinuité de l’entropie, ce qui signifie que l’entropie
molaire du liquide s` est égale à l’entropie molaire du gaz sg,

``→g = T+ (sg − s`) = 0 (16)

6. (4 points) Calculer la chaleur Q2→3 fournie au liquide de van der Waals durant la vaporisation et
l’exprimer explicitement en termes de la pression de vaporisation p−. En déduire la chaleur latente
molaire de vaporisation ``→g qu’il faut fournir au liquide de van der Waals pour qu’il se transforme
entièrement en gaz durant la vaporisation 2→ 3.

La vaporisation 2→ 3 est un processus isobare à pression p−. Par conséquent, le travail réalisé par le
fluide de van der Waals sur l’environnement à la pression de vaporisation p+ s’écrit,

W2→3 = −
∫ 3

2

p dV = − p−
∫ V3

V2

dV = − p− (V3 − V2) < 0 (17)

y y
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La variation d’énergie interne du fluide de Van der Waals durant la vaporisation à température con-
stante T− s’écrit,

∆U2→3 = U3 − U2 = N2a

(
1

V2
− 1

V3

)
> 0 (18)

Compte tenu du premier principe, la chaleur fournie au fluide durant la vaporisation 2→ 3 s’écrit,

Q2→3 = ∆U2→3 − W2→3 = N2a

(
1

V2
− 1

V3

)
+ p− (V3 − V2) > 0 (19)

La chaleur latente molaire de vaporisation ``g est le rapport de la chaleur fournie Q2→3 au fluide de
van der Waals par la source froide durant la vaporisation et du nombre N de moles,

``→g =
Q2→3

N
= Na

(
1

V2
− 1

V3

)
+
p−

N
(V3 − V2) > 0 (20)

7. (3 points) Durant la détente adiabatique 1 → 2, montrer que la température T et le volume V du
fluide de van der Waals satisfont la relation suivante,

T (V − Nb)
γ− 1

= cste où γ =
c+ 1

c

D’après la relation de Gibbs, durant un processus adiabatique réversible, la différentielle de l’entropie (15)
est nulle,

dS =
cNRdT

T
+
NRdV

V − Nb
= 0 (21)

Par conséquent, la variation d’entropie durant la détente adiabatique 1→ 2 est nulle aussi,

∆S1→2 =

∫ S2

S1

dS = cNR

∫ T2

T1

dT

T
+NR

∫ V2

V1

dV

V − Nb
= 0 (22)

La solution de cette relation intégrale est,

∆S1→2 = cNR ln

(
T2

T1

)
+NR ln

(
V2 − Nb

V1 − Nb

)
= 0 (23)

En divisant la relation (23) par la capacité thermique isochore cNR, on obtient l’identité,

ln

(
T2

T1

)
+ ln

(
V2 − Nb

V1 − Nb

) 1
c

= 0 (24)

Compte tenu de l’inverse du paramètre c,

1

c
= γ − 1 (25)

l’identité (24) peut être remise sous la forme,

ln

(
T2 (V2 − Nb)

γ− 1

T1 (V1 − Nb)
γ− 1

)
= 0 (26)

Par conséquent, l’argument du logarithme doit être égal à l’unité,

T2 (V2 − Nb)
γ− 1

= T1 (V1 − Nb)
γ− 1 (27)

ce qui implique que,

T (V − Nb)
γ− 1

= cste (28)

y y
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8. (BONUS : 2 points) La vaporisation peut être modélisée comme une réaction chimique a de vitesse

de réaction Ωa entre le liquide, considéré comme le réactif de coefficient stœchiométrique νa` et de
potentiel chimique µ`, et le gaz, considéré comme le produit de coefficient stœchiométrique νag et
de potentiel chimique µg. Déterminer l’affinité Aa de la réaction chimique et en déduire la source
d’entropie ΣS durant la vaporisation.

Comme le liquide de van der Waals est entièrement transformé en gaz de van der Waals durant
la vaporisation 2 → 3, le coefficient stœchiométrique négatif du liquide est l’opposé du coefficient
stœchiométrique positif du gaz,

νag = − νa` > 0 (29)

Durant la vaporisation, il y a coexistence des phases liquide et gazeuse, ce qui signifie que le liquide et
le gaz sont à l’équilibre chimique,

µg = µ` (30)

L’affinité chimique de la vaporisation est nulle,

Aa = −
∑

α∈{`,g}

νaα µα = − νa` µ` − νag µg = 0 (31)

Ainsi, compte tenu du fait que le fluide de van der Waals est à l’équilibre thermique et mécanique avec
la source froide à température T− durant la vaporisation, la source d’entropie est nulle,

ΣS =
1

T−
Aa Ωa = 0 (32)

ce qui signifie que la vaporisation est réversible dans ce cycle.

y y
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Problème 3 : Compression isotherme irréversible d’un gaz parfait (21 points)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21

Laisser les cases blanches vides

On modélise la compression isotherme d’un système thermodynamique fermé constitué de N moles de gaz
parfait enfermé dans un cylindre vertical par un piston de masse M et d’aire A. Le cylindre est placé dans
une enceinte dans laquelle on a fait le vide. Il n’y a donc pas de pression atmosphérique à considérer dans
ce problème. De plus, le système est maintenu à température constante T par contact avec un réservoir de
chaleur.

Dans l’état initial i, avant la compression, le gaz parfait de pression pi est à l’équilibre mécanique avec le
piston qui exerce une pression p ext

i sur le gaz. On pose alors un poids de masse M ′ sur le piston ce provoque
la compression du gaz parfait à pression p due à la pression p ext exercée sur le gaz par le piston et le poids :
c’est l’état intermédiaire de compression. Dans l’état final f , après la compression, le gaz parfait de pression
pf a atteint l’équilibre mécanique avec le piston et le poids qui exercent une pression p ext

f sur lui.

pi = p ext
i et p < p ext = p ext

f et pf = p ext
f

Le travail effectué de manière irréversible par le piston et le poids sur le gaz durant la compression isotherme
de l’état initial i à l’état final f s’écrit,

Wi→f = −
∫ f

i

p ext dV

Durant la compression isotherme, la source d’entropie du système s’écrit,

ΣS =
1

T

(
p− p ext) V̇

L’entropie générée de manière irréversible dans le système lors de la compression isotherme est définie comme,

SΣ i→f =

∫ f

i

δSΣ =

∫ tf

ti

ΣS dt

Les réponses doivent être exprimées en termes de la masseM du piston, de la masseM ′ du poids, du nombre
de moles N de gaz parfait, de la température T , de la constante des gaz parfaits R et des grandeurs spécifiées
dans l’énoncé de chaque question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suivantes

y y



y 1/12 y
1. (3 points) Montrer que la variation d’entropie s’écrit en fonction de la chaleur Qi→f restituée au

réservoir de chaleur durant la compression isotherme i→ f ,

∆Si→f =
Qi→f
T

+ SΣ i→f

L’équation de bilan d’entropie pour le gaz parfait à température T s’écrit,

Ṡ = IS + ΣS =
IQ
T

+ ΣS (1)

L’intégration de l’équation de bilan durant la compression isotherme à température T constante par
rapport au temps du temps initial ti au temps final tf s’écrit,∫ tf

ti

Ṡ dt =
1

T

∫ tf

ti

IQ dt+

∫ tf

ti

ΣS dt (2)

Durant la compression isotherme i→ f , la variation d’entropie ∆Si→f s’écrit,

∆Si→f =

∫ Sf

Si

dS =

∫ tf

ti

Ṡ dt (3)

la chaleur Qi→f restituée au réservoir de chaleur est de la forme,

Qi→f =

∫ f

i

δQ =

∫ tf

ti

IQ dt (4)

et l’entropie SΣ i→f générée de manière irréversible s’écrit,

SΣ i→f =

∫ f

i

δSΣ =

∫ tf

ti

ΣS dt (5)

En substituant les grandeurs physiques (3), (4) et (5) dans l’équation de bilan intégrée par rapport au
temps (2) durant la compression isotherme, on obtient le résultat cherché.

2. (3 points) Montrer que les rapports de la pression finale pf et de la pression initiale pi ainsi que du
volume final Vf et du volume initial Vi s’écrivent,

pf
pi

= 1 +
M ′

M
et

Vf
Vi

=
M

M +M ′

Dans l’état d’équilibre mécanique initial i, la pression pi du gaz parfait est la pression p ext
i exercée le

piston de masse M d’aire A sur le gaz. Dans l’état d’équilibre mécanique final f , la pression pf du gaz
parfait est la pression p ext

f exercée par le piston et le poids de masse totale M +M ′ sur le gaz. Ainsi,
on en déduit les relations suivantes,

pi = p ext
i =

Mg

A
et pf = p ext

f =
(M +M ′) g

A
(6)

où g est l’intensité du champ gravitationnel. Ainsi, le rapport des pressions s’écrit,

pf
pi

=
p ext
f

p ext
i

=
M +M ′

M
= 1 +

M ′

M
(7)

Compte tenu de l’équation d’état du gaz parfait, les volumes et les pressions sont liés par la relation,

pi Vi = pf Vf = p V = NRT (8)

Ainsi le rapport des volumes s’écrit,

Vf
Vi

=
NRT

pf

pi
NRT

=
pi
pf

=
M

M +M ′
(9)
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3. (3 points) Calculer le travail Wi→f effectué par le piston et le poids sur le gaz et la chaleur restituée
Qi→f au réservoir de chaleur durant la compression isotherme irréversible i→ f .

Compte tenu de l’équation d’état du gaz parfait (8) et des relations entre les pressions (7),

p ext = p ext
f = pf (10)

on obtient le travail effectué par le piston et le poids sur le gaz durant la compression isotherme
irréversible i→ f ,

Wi→f = −
∫ f

i

p ext dV = − pf
∫ f

i

dV = − pf (Vf − Vi)

= − pf
(
NRT

pf
− NRT

pi

)
=

(
pf
pi
− 1

)
NRT =

M ′

M
NRT > 0

(11)

La variation d’énergie interne du gaz parfait durant la compression isotherme est nulle,

∆Ui→f = CV ∆Ti→f = cNR∆Ti→f = 0 (12)

car ∆Ti→f = 0. A l’aide du premier principe, on en déduit alors la chaleur restituée au réservoir de
chaleur,

Qi→f = ∆Ui→f − Wi→f = −Wi→f =

(
1− pf

pi

)
NRT = −M ′

M
NRT < 0 (13)

4. (2 points) Calculer la variation d’entropie ∆Si→f du gaz parfait durant la compression isotherme
irréversible i→ f .

La relation de Gibbs pour la compression isotherme du gaz parfait s’écrit,

dU = T dS − p dV = CV dT = 0 (14)

Ainsi, compte tenu de l’équation d’état du gaz parfait (8), la différentielle de l’entropie est,

dS =
p dV

T
=
p dV

T
= NR

dV

V
(15)

En intégrant la différentielle de l’entropie (15) compte tenu du rapport des volumes (9), on obtient la
variation de l’entropie,

∆Si→f =

∫ Sf

Si

dS =

∫ f

i

p dV

T
= NR

∫ Vf

Vi

dV

V
= NR ln

(
Vf
Vi

)
= NR ln

(
M

M +M ′

)
= −NR ln

(
1 +

M ′

M

)
< 0

(16)

5. (2 points) Montrer que l’entropie SΣ i→f générée de manière irréversible dans le système durant la
compression isotherme irréversible i→ f s’écrit,

SΣ i→f = NR

(
M ′

M
+ ln

(
M

M +M ′

))
Solution 1: D’après l’équation de bilan d’entropie intégrée par rapport au temps durant la compression
irréversible i→ f , l’entropie générée SΣ i→f dans le système s’écrit,

SΣ i→f = ∆Si→f −
Qi→f
T

(17)

En substituant la variation d’entropie (16) et la chaleur (13) échangée durant la compression irréversible
i→ f dans l’entropie générée (17), on obtient le résultat cherché.
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Solution 2: Compte tenu de la relation p ext = pf , l’entropie SΣ i→f générée de manière irréversible
dans le système s’écrit,

SΣ i→f =

∫ tf

ti

ΣS dt =

∫ tf

ti

1

T

(
p− p ext) V̇ dt =

∫ f

i

p dV

T
− pf

T

∫ Vf

Vi

dV (18)

Compte tenu de l’équation d’état du gaz parfait (8), l’entropie (18) devient,

SΣ i→f = NR

∫ Vf

Vi

dV

V
− pf

T

∫ Vf

Vi

dV = NR ln

(
Vf
Vi

)
− pf

T
(Vf − Vi) (19)

Compte tenu des rapports entre les pressions (7) et les volumes (9), l’entropie (19) devient,

SΣ i→f = −NR ln

(
pf
pi

)
+NR

(
pf
pi
− 1

)
= NR

(
M ′

M
− ln

(
1 +

M ′

M

))
(20)

ce qui donne le résultat cherché.

6. (3 points) Dans la limite où le rapport des masses est suffisamment faible,

ln (1 + x) ' x où x =
M ′

M
et 0 < x� 1

montrer explicitement que la compression devient réversible et en déduire explicitement une relation
entre les pressions p et p ext dans ce cas.

Dans la limite où le rapport des masses x = M ′/M est suffisamment faible, l’entropie générée par
irréversibilité dans le système s’annule,

SΣ i→f = NR

(
M ′

M
− ln

(
1 +

M ′

M

))
' NR

(
M ′

M
− M ′

M

)
= 0 (21)

ce qui signifie que dans cette limite, la compression est réversible. On en déduit l’identité suivante,

SΣ i→f =

∫ f

i

δSΣ =

∫ tf

ti

ΣS dt = 0 (22)

Par conséquent, la source d’entropie est nulle,

ΣS =
1

T

(
p− p ext) V̇ = 0 (23)

où V̇ < 0. On en conclut que le gaz parfait et le piston avec le poids sont à l’équilibre mécanique,

p = p ext (24)

7. (3 points) Calculer le travailW 0
i→f effectué sur le gaz par le piston et le poids durant une compression

réversible i → f et montrer que les travaux effectués de manière réversible et irréversible sont égaux,
c’est-à-dire W 0

i→f = Wi→f , dans la limite où le rapport des masses est suffisamment faible, c’est-à-dire
x = M ′/M � 1.

Le travail W 0
i→f effectué sur le gaz par le piston et le poids durant une compression réversible i → f

s’écrit,

W 0
i→f =−

∫ f

i

p dV = −NRT
∫ Vf

Vi

dV

V
= −NRT ln

(
Vf
Vi

)
= NRT ln

(
pf
pi

)
(25)

Dans la limite où le rapport des masses est suffisamment faible M ′/M � 1, compte tenu du rapport
des pressions (7), le travail effectué durant une compression réversible est égal au travail effectué durant
une compression irréversible,

W 0
i→f = NRT ln

(
1 +

M ′

M

)
' M ′

M
NRT = Wi→f (26)
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8. (BONUS : 2 points) Montrer qu’en général la compression isotherme est irréversible explicitement

à l’aide de l’entropie SΣ i→f .

Solution 1: Afin de déterminer le domaine en M ′/M où ce signe est positif, on calcule le zéro de
l’entropie SΣ i→f ,

SΣ i→f = NR

(
M ′

M
− ln

(
1 +

M ′

M

))
= 0 si

M ′

M
= 0 (27)

La dérivée de l’entropie SΣ i→f par rapport au rapport des masses est positive,

dSΣ i→f

d
(
M ′

M

) = NR

(
1− 1

1 + M ′

M

)
= NR

M ′

M

1 + M ′

M

> 0 si
M ′

M
> 0 (28)

Ainsi, l’entropie SΣ i→f générée dans le système est positive et la compression est irréversible,

SΣ i→f > 0 (29)

Solution 2: Etant donné que la pression p ext exercée par le piston et le poids sur le gaz est supérieure à
la pression p du gaz durant la compression, c’est-à-dire p ext > p, et que le volume diminue, c’est-à-dire
V̇ < 0, la source d’entropie est positive,

ΣS =
1

T

(
p− p ext) V̇ > 0 (30)

Ainsi, l’entropie SΣ i→f générée dans le système est positive et la compression est irréversible,

SΣ i→f =

∫ tf

ti

ΣS dt =
1

T

∫ f

i

(
p− p ext) dV > 0 (31)

car dV = V̇ dt < 0.

The End
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The End
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